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Context 

The melting temperature of any material is effectively constant for macroscopic 

particles.  As the size of particles is reduced to the order of a nanometer (10-9 

meter), however, there is a sharp decrease in the melting temperature.  In the 

case of gold particles, while the normal melting point is 1337K, nanometer sized 

particles melt at temperatures as low as 600K.  Nanoparticles of gold can 

therefore be melted together with relatively low energy input.  Thanks to the 

excellent electrical conductivity of gold, a line of gold nanoparticles sintered 

together forms a conductive wire if the deposition of these lines is precisely 

controlled.  This strategy provides a new method of producing circuitry. 

 

Current efforts at the Laboratory for Thermodynamics in Emerging Technologies 

(LTNT) at the Federal Institute of Technology Zurich, Switzerland (ETHZ) use a 

deposition system much like an ink jet printer.  The “ink” is a solution of gold 

nanoparticles suspended in a carrier fluid, while the “paper” can be any number 

of materials thanks to the low melting temperatures.  For precisely controlled 

operation of such a device, however, the hydrodynamic properties of the solution 

have to be known. 

 

The solution behaves as a non-Newtonian fluid, with a decreasing viscosity as 

shear rate is increased.  There exist devices to measure non-Newtonian 

viscosities, but they require a relatively large sample volume.  Given that the 

solution is expensive, it is advantageous to waste as little of it as possible.  

Therefore a rheometer that measures the viscosity of a sample volume in the 

microliter scale is being developed.  The basic principle of the rheometer follows 

the example of one produced by Tran-Son-Tay et al1 in 1984.  In Tran-Son-Tay’s 

device, a small sphere is suspended in a cylinder filled with the fluid by an 

electromagnetic solenoid with a direct current input.  Meanwhile a second 

solenoid is given a sinusoidal alternating current input, which causes the sphere 

to follow a sinusoidal path of the same frequency but with a phase shift.  This 

phase shift can be used to calculate the viscosity. 
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A problem with this design is that the levitating solenoid only produces a force 

exactly equal to the weight of the sphere at the equilibrium point.  Any deviation 

from this point causes the force to change.  Additionally, the system is unstable: 

moving the sphere towards the solenoid causes it to be pulled more strongly, 

while moving away from the solenoid weakens the force.  The goal of this project, 

then, is to devise a solenoid design that provides a constant compensation for 

gravity over a finite range, not just at a point.  Such a solenoid would have further 

applications than just the project at hand, such as zero gravity experiments or 

low friction electromagnetic bearings. 

 

Electromagnetic Theory 

Maxwell’s four equations of electromagnetism are the foundations of 

electromagnetic theory.  Two are relevant to the situation at hand. 

0=•∇ B   t
EJB
∂
∂

+=×∇ 000 εµµ  

B = magnetic field (teslas) 

E = electric field (volts/meter) 

J = electric current density (amperes/meter2) 

µ0 = 4πe-7 (newtons/ampere2), magnetic permeability of free space 

ε0 = 8.854e-12 (coulomb2/newton-meters), electric permittivity of free space 

  

The first equation says that the total flux of magnetic field lines must always be 

zero.  In other words, there are no point sources of magnetic field or magnetic 

monopoles.  Any magnetic field line must therefore be a closed loop. 

 

For the case of no electric field and a constant current density J, the second 

equation above gives a magnetic field with a constant curl about the wire: 

JB 0µ=×∇      or    rI
r

B ˆ
2

0 ×=
π
µ
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With r defined as the radial distance from the wire.  The magnetic field lines from 

such a field run perpendicular to the current as follows: 

 
Fig. 1: Field around a straight current carrying wire 

 

Similarly, a circular loop produces field lines which travel through the loop.  Inside 

of an infinitely large stack of such loops – an infinite solenoid – the field lines 

would be aligned along the axis of the solenoid.  In reality, of course, the solenoid 

cannot be infinitely long, and according to Maxwell’s equation, the field lines must 

be closed loops, so there is increasing curvature of the field lines towards the 

ends of the solenoid as they begin to wrap back around upon themselves.  This 

curvature will be important later, as the force exerted upon a body in a magnetic 

field depends on both the magnitude and gradient of the magnetic field. 

 
Fig. 2: Finite Solenoid 

Image Credit: Hyperphysics, Georgia State University 

Note that in figure 2 the middle field lines would also loop back around to form 

closed loops, but this has been excluded for simplicity. 
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Magnetisation 

When a body is placed in an external field B, it develops a magnetisation M and 

induced magnetic field H, such that 

HB rµµ0=         HM mχ=         mr χµ += 1  

xm = magnetic susceptibility (zero in vacuum) 

µr = relative magnetic permeability (one in vacuum) 

 

All materials have a non zero value of xm.  Materials commonly thought of as 

non-magnetic simply have a very small value (which is usually negative), 

rendering the induced magnetic field H and any magnetic effects generally 

unnoticeable.  So called diamagnetic materials have xm < 0, while paramagnetic 

have xm > 0.  In general, paramagnetic effects are much stronger than 

diamagnetic.  An applied magnetic field will pass through a vacuum undisturbed, 

with the same strength as it previously had.  If a diamagnetic material is placed in 

this field, it will be magnetized in the opposite orientation as the applied field, 

creating an opposing field that essentially weakens the applied field.  A 

paramagnetic material develops a field aligned with the applied field and 

enhances its strength.  Indeed, paramagnetic materials and especially 

ferromagnetic materials – a special class of strongly paramagnetic metals which 

retain magnetisation after the applied field is removed – are used to enhance 

field strength in engineering applications. 

 

Magnetic Force 

The magnetic potential energy of a magnetic moment M in a field B is: 

BMU •−=
2
1

 

Expressing M in terms of B, the above equation becomes: 
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2

02
BU

r

m

µµ
χ

−=  

The force exerted by the magnetic field is equal to the opposite of the gradient of 

potential U. 

2

02
BUF

r

m
B ∇=−∇=

µµ
χ

 

Assuming that the test sphere is placed along the axis of symmetry of the 

solenoid, and that the inner radius of the solenoid is much larger than the 

diameter of the sphere, the gradient can be approximated by the substantial 

derivative in the z direction. 

2

0

2

0

2

0 222
B

dz
dB

z
BF

r

m

r

m

r

m
B µµ

χ
µµ

χ
µµ

χ
≈

∂
∂

≈∇=  

Since we are seeking a constant force FB, we can rearrange the above equation 

and integrate over z. 

21

02)( ⎥
⎦

⎤
⎢
⎣

⎡
= zFzB

m

Br

χ
µµ

 

We now have an expression for the magnetic field B that will exert a constant 

force FB in the z direction on a material with properties µr and xm.  It is important 

to remember, however, that this expression is only valid for consideration of 

forces along the axis of symmetry. 

 

Solenoid Design for Constant Force Response 

Given a solenoid with an axis of symmetry z, is it possible to adjust the field 

produced by the solenoid by varying radius and current to produce a constant 

force response over some range of z?  Since the effective current can be varied 

by varying the number of coils, we define inner and outer radius functions ri(z) 

and ro(z), where the number of coils at a given z is equal to integer((ro(z) – ri(z)) / 
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t), t being the thickness of wire used.  The magnetic field along the axis of 

symmetry from one circular coil of radius r with current I is given by: 

2322

2
0

))((2
)(

i
icoil zzr

IrzzB
−+

=−
µ

 

where z is the distance from the plane of the coil, situated at zi.  Modeling the 

solenoid as a stack of such current loops results in: 

∑∑∑∑ −+
=−=

i j ij

j

i j
iijcoilsolenoid zzr

Ir
zzBzB 2322

2
0

, ))((2
)()(

µ

 

The first sum calculates the contributions from each loop that exists at a given 

height zi.  The second sum adds the contributions of each set of coils over all 

positions zi to give the total magnetic field.  Now, to convert to integral form, 

make the following transformations: 

t
dzdn

tdndz
tnz

v

v

v

=

=
=

  

t
drdn

tdndr
tnr

r

r

r

=

=
=

 

where nv is the number of coils in vertical direction z, and nr is the number of coils 

in the radial direction r.  Finally, 

0

0

0

0

0

( ) 2
0

3 22 2
0 ( ) 0

( ) 2
0

03 22 2 2
0 ( ) 0

( )
2 ( )

2 ( )

o

i

o

i

r zL

r z
r z

r zL

r z

I rB z dn dn
r z z

I r drdz
t r z z

µ

µ

⋅ ⋅
=

⎡ ⎤+ −⎣ ⎦

⋅
=

⎡ ⎤+ −⎣ ⎦

∫ ∫

∫ ∫  

Setting this equal to the expression derived earlier for B(z) will theoretically yield 

the solution.  However, the above expression has two unknown functions, ri(zo) 

and ro(zo).  Unless there is another way to constrain the geometry of the system, 
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the only way to solve this equation is to dictate one of the radius functions and 

solve for the other. 

21

0

0

)(

)(
2322

2

2
0 2

)(2 ⎥
⎦

⎤
⎢
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⎡
=

+∫ ∫ zFdrdz
zr

r
t
I

m

Br
L zr

zr

o

i
χ
µµµ

 

 

Approximate Solution 

Previously, an expression for the magnetic force was derived, under the 

assumption that only axial forces are considered, in the following form:  

2

02
B

dz
dF

r

m
B µµ

χ
=    or   

2
1 B

dz
dCF B =

 

where C1 is a constant.  Now, given that we are seeking a constant force FB, 

2

1

B
dz
d

C
FB =    integrating and rearranging,   Bz

C
FB =⎥

⎦

⎤
⎢
⎣

⎡ 2
1

1
 

Thus, B must be proportional to the square root of z.  Since B is also directly 

proportional to I and I is proportional to nr, nr should be proportional to the square 

root of z as well.  The argument goes like this: 

2
1

zBInr ∝∝∝      thus     
2

1
znr ∝  

Therefore, holding ri constant and making ro a function proportional to z1/2, it is 

theoretically feasible to develop a constant electromagnetic force over a finite 

distance.  It is important to keep in mind that this distance would have to be 

contained within the bounds of the solenoid. 

 

Earnshaw’s Theorem 

The above analysis yields a result for a constant force in the axial direction.  For 

the levitation to be stable, however, there also needs to exist a stabilising force in 

the radial direction.  The feasibility of this has already been analyzed by 
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Earnshaw in 1842, before the discovery of diamagnetism.  Earnshaw was 

investigating stability of 1/r potentials in general, which include gravitational, 

electrical, and magnetic forces.  For an object to be in mechanical equilibrium, 

the net force acting on it must be zero.  For this equilibrium to be stable, the 

gradient of this field F must be negative.  Therefore the Laplacian of the 

corresponding potential field U must be positive.  Mathematically, 

0=−∇= UF    and   02 <−∇=∇ UF  

The Laplacian of the sum of any set of 1/r potentials is, however, equal to zero: 

022 =∇=⎟
⎠
⎞

⎜
⎝
⎛∇ ∑ U

r
k

 

Therefore no arrangement of 1/r potentials can result in a stable field in all 

directions.  If the field is stable in one direction (positive Laplacian) it will be 

unstable in another direction (negative Laplacian) so that the net Laplacian is 

equal to zero.  The case of the trivial solution of all second derivatives of U being 

equal to zero is metastable, but impossible in reality as the first derivatives of U 

would have to be constant.  Since the form of the potential is 1/r, the first 

derivative of the potential cannot be a constant. 

 

Earnshaw was concerned with fields where forces are always directed towards 

sources of field – gravitational, electrical, and paramagnetic fields – but he wrote 

his theorem before the discovery of diamagnetic materials, which experience 

forces directed away from magnetic field maxima.  Later work by Kelvin proved 

that diamagnetic materials could be stably levitated3. 

 

In the case of the field inside of a solenoid it is fairly apparent that only a 

diamagnetic sphere could experience stable levitation.  The magnetic potential of 

a sphere in a magnetic field B, from earlier derivation, is as follows: 

2

02
BU

r

m

µµ
χ

−=  
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For a diamagnetic material, xm is negative, while for a paramagnetic material, xm 

is positive.  For a solenoid with windings at a radius of .4cm, the qualitative field 

strength and potential in the radial direction felt by a diamagnetic and 

paramagnetic sphere on the axis of symmetry are shown in figure 3 below.  Note 

that the peaks at -0.4 and 0.4cm would asymptotically approach infinity as 

distance from the wire approaches zero.  Only in the case of the diamagnetic 

sphere is the concavity (Laplacian in three dimensions) positive.  As an analogy 

to gravitational potential, one can imagine the sphere “sitting” on the potential: in 

the diamagnetic case the sphere always rolls back to the center, while in the 

paramagnetic case the sphere will continue to roll farther away. 

-1.5 -1 -0.5 0 0.5 1 1.5

Radius (cm)

Field Strength Paramagnetic Potential Diamagnetic Potential

 
Fig. 3: Diamagnetic vs Paramagnetic Potential 

 

Diamagnetic Stabilisation 

Unconditional stable magnetic levitation, then, is possible only with a diamagnetic 

levitating body.  In fact, this phenomenon has already been studied at length by 

researchers at the University of Nijmegen, who have successfully levitated 

graphite, water droplets, and even a living frog.2  While graphite and water are 

paramagnetic, it was the water content in the frog that allowed it to be levitated.  

Apparently the frog was not harmed in any way by the levitation. 
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The strongest ordinary diamagnetic materials are bismuth and graphite, which 

have a value of magnetic susceptibility xm of approximately -170e-6.  Since this is 

not exceptionally strong, stable levitation of even a very small sphere (the 

rheometer requires a sphere of diameter on the order of 1mm) would require a 

very large solenoid.  Indeed, the solenoid used at the University of Nijmegen was 

capable of magnetic fields of more than 10 Tesla.  In our case, such a solenoid 

would be prohibitively expensive and could disrupt the other instrumentation, 

some of which would have to be placed inside of the throat of the solenoid.  

 

In fact, based on the results of a brief program that models the solenoid as a 

stack of current loops, the dimensions of the solenoid can be estimated after 

fixing some variables.  With a wire thickness of 1mm, an overall solenoid length 

of 2m (necessary to eliminate entry effects that curve field lines at the ends), an 

inner radius of 10mm, and a maximum outer radius of 100mm, the program 

estimates a solenoid of more than 113,000 windings.  Even so, it would need 

10kA of current to produce enough force to levitate a graphite sphere. 

 

At the wider base of the solenoid the field strength would exceed 1000 Teslas.  

The reason our solenoid would have to be so much more powerful than the one 

used at the University of Nijmegen is that ours intends to support the weight over 

the entire length of the solenoid.  For stable levitation at one specific point, the 

ideal placement of this point is just outside one end of the solenoid, where the 

rapid change in field strength produces a large gradient and a correspondingly 

large force.  Within the solenoid the attainable gradients are much smaller. 

 

A copy of the program and its output plots are provided in the appendix. 

 

Controlled Modulation of Sphere 

The proposed design uses a control system and one solenoid to modulate a 

ferromagnetic (xm > 0) sphere.  In principle, a sinusoidal current is fed to the 
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solenoid, which – assuming a linear system – results in a sinusoidal output 

position of the sphere following a sinusoidal path of the same frequency, with an 

adjusted amplitude and a phase shift.  In our case, there will be a second phase 

shift that comes from the hydrodynamic drag force exerted upon the sphere.  

Measuring the total phase shift between the expected position and the actual 

position, and subtracting the known phase shift from the control system, the 

viscous phase shift can be calculated.  This phase shift yields the viscosity. 

 

The assumption of a linear system is a difficult one.  In reality the force is 

proportional to the square of the solenoid current, while it is proportional to the 

inverse square of the distance.  Since the movement away from the equilibrium 

position will be fairly small, we will approximate both dependencies as linear as 

follows: 

IIzzequilB KKFF δδ ++=  

where constants Kz and KI are defined in the following manner: 

constI
B

z z
FK =∆

∆
=       and      constz

B
I I

FK =∆
∆

=  

Thus the force is assumed to be the sum of the force at the equilibrium position 

and linearized contributions by variations in position and current.  Since we can 

only input a sinusoidal current with a conventional power supply, the control 

system will use the linearized constants as the basis for converting a sinusoidal 

input current into a sinusoidal output force.  A direct sinusoidal input current to 

the solenoid would not provide a sinusoidal output force, but would exert excess 

force when the ball is closer and insufficient force when the ball is farther. 

 

Mathematically, if we assume a sinusoidal current and position as follows 

)sin(0 tII ω=    and   )sin(ˆ0 φω −−= txxx  

and write Newton’s Second Law for the forces acting on the sphere we get: 
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xK
x
IKmgxmF S &&& ηη−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−== 2

2

 

where η is the viscosity.  Substituting in the functions I and x yields: 

xK
t

x
x

t
x
IKmgxm S &&& η

φω

ω
η−

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−=

2

0

2

0

0

)sin(
ˆ

1

)sin(
 

The equilibrium force should cancel gravity, so we choose I0 and x0 such that 

Ks(I0/x0)2 = mg and it follows that 

xK
t

x
x

tmgxm &&& η
φω

ω
η−

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−=

2

0

)sin(
ˆ

1

)sin(1
 

For a sinusoidal input current to correctly account for gravity, the function in the 

parentheses (hereafter referred to as f*) would have to be symmetrical about the 

equilibrium position x0. 

*

0

2

0

,
ˆ

,
)sin(

ˆ
1

)sin(1 f
x
xtf

t
x
x

t
=⎟⎟

⎠
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⎝

⎛
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
− φω

φω

ω
 

Unfortunately it is not.  Figure 4 below shows plots of f* with varying values of 

x/x0 and Φ.  Frequency and therefore angular frequency does not affect the 

shape of the curve and so has been held constant at a value of 1Hz.  Note that 

while a larger phase shift and the condition x>>x0 – both of which will occur in the 

rheometer – help to correct asymmetry in f*, it is nevertheless symmetrical about 
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a different average value than intended and displays a “pseudo-frequency” twice 

that of the position function. 

0<Φ<pi, x/x0 = 1/5, f=1Hz

-2
-1.5

-1
-0.5

0
0.5

1
1.5

2
2.5

0 0.5 1 1.5 2 2.5

Time(s)

Position x
Φ=0
Φ=(1/3)pi
Φ=(2/3)pi
Φ=pi

 

1/5<x/x0<1/40, Φ=pi/3, f=1Hz

-1

-0.5

0

0.5

1

1.5

2

2.5

0 0.5 1 1.5 2 2.5

Time(s)

Position x
x/x0=1/5
x/x0=1/10
x/x0=1/20
x/x0=x/40

 
Fig. 4: Function f* with Sinusoidal Current and forced Sinusoidal Position 

 

Therefore a control system will have to be employed to transform the sinusoidal 

current input.  Such a complex transformation can only be satisfactorily 

performed with an analog control circuit.  Therefore one will have to be designed 

and built for this application. 
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Note also that the solenoid can only exert an upwards directed force on the 

ferromagnetic sphere.  At this point it is worthwhile to investigate whether a 

second solenoid positioned below the sphere will be necessary.  The position 

function of the sphere will be of the form 

)sin()( tAtz ω=  

where A is the amplitude and ω is the angular frequency.  Therefore, 

)cos( tAw
dt
dz ω=    and   )sin(2

2

2

tA
dt

zd ωω−=  

The maximum acceleration felt by the ball is therefore simply Aω2.  In our case, A 

will be smaller than 1mm.  Substituting 1mm for A and setting the maximum 

acceleration equal to the acceleration of gravity then results in a maximum 

possible angular frequency of 99rad/s without a second solenoid.  Since the 

rheometer will operate in frequencies between π and 4π rad/s – well below this 

maximum value – only the top solenoid is necessary. 

 

Therefore the downward force can be provided by gravity.  As long as the 

average force on the sphere is equal to the opposite of the gravitational force, 

however, the net effect of gravity will be compensated for as intended.  Figure 5 

shows a summary of the forces acting on the sphere. 

-60
-40
-20

0
20
40
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80

100

Time

Fo
rc

e 
(µ

N)

Solenoid Force Gravitational Force Net Applied Force

 
Fig. 5: Forces acting on Sphere 
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Since the intent is to apply a sinusoidal force to the sphere with a mean value of 

zero, but gravity is also acting on the sphere, the solenoid applies a two 

component force: 

( ))sin(1)sin( tmgtmgmgFB ωω +=+=  

The maximum possible downward force is simply -mg, therefore the upper limit of 

force applied by the solenoid is set equal to 2mg for symmetry.  The real device 

will not operate with accelerations as high as that of gravity, but as the maximum 

achievable acceleration it provides a convenient reference value.  In order to 

estimate the magnitude of the forces we are dealing with, we assume a perfect 

sphere of 1mm diameter and a density of 7500kg/m3 (typical of steel), which 

gives a sphere weight of 38.48µN (10-6 N). 

 

Laboratory Exercise: Magnet Levitation 

In order to gain some insight into the nature of the control problem at hand, an 

example circuit was built under the guidance of Simon Huwyler of the EEK 

(Professur für Elektrotechnische Entwicklung und Konstruktionen) group at ETH.  

The intent of the circuit was to use an analog proportional-differential (PD) 

controller to stabilize the suspension of a small permanent magnet in air.  A copy 

of the circuit diagram is provided in the appendix.  Much was learned from the 

construction of this test circuit.  First of all, that a simple PD controller will likely 

not be sufficient in the rheometer circuit.  It is advisable in this case to use a 

proportional-integral-derivative or PID controller.  Also, that the cooling needs of 

the solenoid and circuit will have to be considered in the rheometer as significant 

heat was produced by both. 

 

Determination of Linearized Parameters 

An analysis of two different solenoids was carried out to determine the constants 

Kz and KI as defined above.  Since the forces being measured are extremely 

small, a counterbalanced beam scale was devised as shown: 
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Fig. 6: Counterbalanced Beam Scale 

 

The test sphere is glued atop a tiny glass tube.  This method was used because 

it restrains the motion of the sphere in all directions and does not disrupt the field, 

because the magnetic susceptibility of glass is very small (on the order of 10-6). 

 

Because the fulcrum is placed very near to the scale, the force applied to the test 

sphere by the solenoid at the opposite end will be “amplified” and forces of small 

magnitude can be more easily measured.  Another advantage of this system is 

that it ensures the applied field from the solenoid does not affect the scale, which 

employs its own electromagnetic solenoid to keep the table of the scale level.  

This is important for our application as it ensures that the position of the ball does 

not change as the force is increased, allowing us to control position and current 

separately.  Schematically, the system looks like this: 
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 mg 
 L3 
      
 
 
 
 
  L2 L1  
 

Fs Ffulcrum FB 
 

 

Note that only net forces are shown.  For example, at the left end the 

counterweight is acting downwards and the scale is applying a force upwards.  

Since only the changes in force will be used in the analysis we can resolve the 

two forces as one net force Fs.  Similarly, the net force resulting from the weight 

of the test sphere and tube, as well as the magnetic force applied by the 

solenoid, are resolved into FB.  A torque balance about the fulcrum yields: 

1

3

1

2

L
Lmg

L
LFF sB +=  

From this equation the amplification effect is clear.  The sensitivity of the scale 

has effectively been increased by the ratio L1/L2, or in the case of the experiment 

about 11.5 times.  Since the scale reads in mass (grams) and not in force, Fs is 

replaced by ms*g in the actual calculations. 

 

In experiments of this type, there is always some uncertainty in the calculated 

values which results from uncertainty in the measured values.  This uncertainty, 

called µ, can be quantified as follows: 
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In this particular case, µFB = .00182N.  Remembering that in the control system of 

the viscosity measurement device, the maximum applied force is 2mg = 

76.96µN, this is an unfortunate level of uncertainty.  There are various ways to 

potentially improve the setup.  A more accurate scale would decrease the term 

µFS while the use of a calipers as opposed to a ruler would decrease the terms 

µL1 and µL2.  Decreasing the L2/L1 ratio would also increase the sensitivity of the 

scale to changes in applied force, so intuitively it should be made as low as 

possible.  Mathematically, the term L2/L1 is a multiplier in the uncertainty term, so 

increasing the sensitivity of the device in this way corresponds to decreasing the 

uncertainty in a linear manner.  However, as the beam increases in length it 

starts to act as a cantilever with its own weight bending it downwards at the 

fulcrum.  With the modest L2/L1 ratio of 11.5 employed here, the beam was 

assumed to be perfectly rigid, but a higher value would mean that this effect 

would have to be accounted for as another source of error.  Additionally, 

counteracting this bending would require a stronger beam material, which would 

necessitate a larger counterweight and a stronger fulcrum. 

 

Experiments 

In order to determine the linearized constants and also to learn something about 

the characteristics of electromagnetic solenoids, two solenoids were tested.  

Descriptions of the solenoids were as follows: 

Solenoid 1   Solenoid 2  
Windings 500  Windings 3700 
Inner Radius 5mm  Inner Radius 4mm 
Outer Radius 20mm  Outer Radius 13.75mm 
Height 20mm  Height 65mm 
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Since both of the solenoids were sealed, it was not possible to measure the 

thickness of the wires in each solenoid.  As a visual estimation, the wire in 

solenoid 1 was on the order of 1mm while the wire in solenoid 2 was on the order 

of 0.2mm.  This allowed solenoid 1 to handle more current without overheating. 

 

A holder for the solenoid was devised from a micrometer so that the distance 

could be manipulated precisely.   A power supply capable of delivering current at 

an accuracy of +/- .01 amperes was used to power the solenoid. 

 

Experiment 1: Solenoid Force 

The first experiment performed sought a characterization of the force as a 

function of current and distance from the solenoid.  The solenoid was therefore 

tested throughout a range of current at various distances from the scale.  Raw 

data is given in the appendix, but the general form of the results was that at each 

distance force is approximately a quadratic function of current.  Mathematical fits 

were made so that the dependency of force on distance could also be calculated. 

 

To calculate the constants KI and Kz, simply choose a desired equilibrium 

distance and calculate the partial derivatives of F(I,z) with respect to I and z at 

that point.  For example, with a distance of 3mm from solenoid 1, the force is 

approximated by the function 

IIF mm 4.54478.99 2
3 +−=    and   4.54456.1993 +−=

∂
∂ I

I
F mm

 

with force in terms of µN and current in terms of amperes.  Setting equilibrium 

force equal to the weight of the sphere yields I = .0716A.  Substituting this value 

of I into the second equation, 

A
NK

I
F

II
mm µ1.5300716.

3 ==
∂

∂
=  
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As for the distance constant, simply substitute the equilibrium value of I into the 

functions for F at 2mm and 4mm: 

NIIF

NIIF

mm

mm

µ

µ

91.257.36023.14

92.619.8764.172
2

4

2
2

=+=

=+−=
 

The value of Kz is taken to be the average of the slopes between F3mm and each 

of the other two functions: 

mm
NK

z
F

z
F

z
F

z
avg

µ18
2
1

4,33,2 −==⎟
⎠
⎞

⎜
⎝
⎛

∆
∆

+
∆
∆

=
∆
∆

 

These values can then be used as a baseline for the design of a control system 

to modulate the sphere.  Reassuringly, the results of the experiment show that 

the functions are only weakly quadratic and that linearizations will give a good 

approximation of the actual behavior of the solenoid. 

 

Experiment 2: Force with Positive and Negative Current 

In all of the experiments, the solenoid was supported with a steel bolt.  Given that 

steel is ferromagnetic (xm≈50) it enhances the field strength and reduces the 

amount of current necessary to create a given electromagnetic force.  It also 

poses a potential problem in that ferromagnetic materials retain some degree of 

magnetisation after the applied magnetic field is removed, resulting in a 

hysteresis loop for magnetisation M vs applied field B. 
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Figure 7: Hysteresis Loop 

Image Credit: Wipikedia Free Online Encyclopedia 

 

Therefore it is possible that the magnetic field acting on the ball in the previous 

experiment came from not only the solenoid but also the steel bolt.  To 

investigate this effect, another experiment was performed in which the current 

was first increased and decreased in one voltage orientation, then the orientation 

switched immediately thereafter and increased and decreased again.  

Theoretically this procedure would encompass the entire hysteresis loop. 

 

Note, however, that switching the direction of current flow will not change the 

direction of the force.  Because the sphere is always magnetised in the same 

orientation as the net field applied to it, it will always be pulled towards field 

maxima.  In principle, after the current changes orientation but before it is 

increased to the point that it demagnetises the bolt, the ball will continue to feel a 

force. 

 

In the actual experiment a negative force was observed.  Comprehensive raw 

data is again provided in the appendix.  Unfortunately this probably has more to 

do with vibrations from adjusting the wires and power supply disrupting the 
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balance of the beam than any physical phenomenon.  It is interesting to note, 

however, that immediately after changing voltage orientation the current had to 

be increased appreciably (~1 ampere) before a change could be observed in 

force felt by the sphere.  This is because the solenoid was applying a field 

opposing the field of the bolt, so that the net field felt by the sphere was relatively 

unaffected until the solenoid had “reset” the magnetisation of the bolt to be 

parallel with its own.  The use of a power supply capable of switching directly 

from positive to negative voltage, as well as a better isolated table, could improve 

the accuracy of the results of this experiment. 

 

Experiment 3: Field Strength 

In addition to measurements of force, both of the solenoids were also tested for 

magnetic field strength.  This experiment utilized a hall sensor and the same 

micrometer based solenoid holder.  The hall sensor is a common device used to 

measure magnetic field strength.  In principle, it simply produces a small current, 

which, in the presence of a magnetic field, is deflected resulting in a voltage 

perpendicular to the direction of current flow.  This voltage is proportional to the 

field strength. 

 

Modeling the solenoid as a stack of current loops, the field strength should be 

linearly dependent on the current.  Indeed, this is the case for solenoid 1 (raw 

data once again provided in appendix).  For solenoid 2, however, the field 

strength had a tendency to level off at higher current.  This is probably a result of 

the longer steel bolt employed in supporting solenoid 2, which would initially act 

to enhance the field but would no longer contribute after its magnetic saturation, 

leaving only the solenoid which is of course comparatively weaker than the 

solenoid and bolt together. 

In the case of solenoid 1 the bolt was shorter and therefore the ferromagnetic 

effects were reduced. 
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Conclusion 

This project investigated the feasibility of an electromagnetic solenoid capable of 

stable levitation over a given distance without control effects.  The intent was to 

use such a solenoid in a rheometric device for measuring dynamic viscosity.  It 

was concluded that while such a solenoid is possible theoretically with 

diamagnetic levitation, it is not practical to implement.  Therefore an alternate 

rheometer design was devised that uses a control system and paramagnetic 

levitation.  Initial progress was made towards the completion of this control 

system in the form of determination of linearized constants characterizing the 

response of two potential solenoids.  Unfortunately time restraints have 

prevented the rheometer from being completed at the time of this writing.  It 

should be noted that this project was a collaborative effort and that the design of 

the remaining parts of the rheometer such as the distance measurement system, 

cooling system, and housing was done by Robert Büchel as a separate research 

project. 
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Appendix 
 

Experiment 1: Solenoid Force 
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Force vs Current – Approximate Fit 

Solenoid 1 F(Ne-6) = C1*I^2 + C2*I Solenoid 2 F(Ne-6) = C1*I^2 + C2*I 
Distance 
(mm) C1 C2  

Distance 
(mm) C1 C2 

1 55.74 52.04  0.5 359.2 976.7
2 56.92 85.07  1 557.7 543
3 46.87 68.91  1.5 21.51 1007
4 32.68 52.91  2 -172.4 876.9
5 36.81 20.42  3 -99.78 544.4
6 13.05 57.18  4 14.23 360.7
7 -7.568 83.51  5 121.6 178.5
8 3.507 36.68  6 0 147.2

 

 

 

 

 

Experiment 2: Force with Positive and Negative Current 

Distance 1mm

-800
-600
-400
-200

0
200
400
600
800

-4 -2 0 2 4

Current (A)

Fo
rc

e 
(µ

N)

+Increasing
+Decreasing
-Increasing
-Decreasing

 



Peter Tennessen 
LTNT, ETH Zürich 

 

28 

Distance 2mm
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Experiment 3: Field Strength 
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Field Strength vs Current – Approximate Fit 

Solenoid 1 B(G) = C1*I  Solenoid 2 B(G) = C1*I^2 + C2*I 
Distance 
(mm) C1  

Distance 
(mm) C1 C2 

1 0.3884  0.5 -1.2061 1.9598 
2 0.3198  1 -1.0743 1.7387 
3 0.263  1.5 -0.8973 1.5019 
4 0.2214  2 -0.7623 1.3276 
5 0.1907  3 -0.6637 1.0927 
6 0.163  4 -0.5147 0.8762 
7 0.1425  5 -0.4584 0.7654 
8 0.1237  6 -0.3801 0.6428 
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MATLAB Program Solenoid.m 
% this program calculates the magnetic field along the central axis of an 
% axisymmetric solenoid.  user can vary the geometry (radius) and thickness 
% (num of coils) at each vertical point 
% program then uses field to determine force as a function of position, 
% assuming force is proportional to field*grad(field) or B*dB/dz 
%SI units - m, kg, N, amperes etc 
%overall solenoid length L 
%thickness of wire t 
%cross sectional area of wire A 
%length of wire LW 
%basic current running through solenoid I 
%solenoid coil geometry matrix S = [z position, radius] 
%position matrix P from bottom to top of matrix (for plotting) 
%magnetic field B = B(z) 
%derivative dB/dz = gradB 
%force/constant F = B*gradB 
%resolution of B in z = a, normally L/1000 
%shape of inner wall of solenoid r_in(z) 
%shape of outer wall of solenoid r_out(z) 
%axial position z array u = S(*,1) 
%radius r array v = S(*,2) 
L = 2.0; 
t = .001; 
A = (pi/4)*t^2; 
LW = 0; 
I = 10000; 
clear S; 
clear P; 
clear B; 
clear gradB; 
clear F; 
a = L/1000; 
clear r_in; 
clear r_out; 
clear u; 
clear v; 
clear max; 
%graphite sphere of 1mm diameter 
V = 1.767e-9    %volume of test body m^3 
rho = 2160      %density kg/m^3 
x = -170e-6     %susceptibility, unitless 
disp('press control + c to interrupt program') 
%reset index i 
i=1; 
disp('building solenoid geometry matrix...') 
disp('windings count:') 
for z = L:-t:0 
    %define here functions r_in and r_out for shape of solenoid 
    %program then adds the number of loops n at current position z to 
    %achieve desired shape, round because you can't make 1/2 a loop 
    r_in = .010; 
    r_out = (.10/(L^.5))*(L-z)^.5; 
    %r_out = .10;  
    n = round((r_out-r_in)/t); 
    for j = 1:n  
        S(i,1) = z;         
        %radius, second term accounts for increasing radius as coils 
        %overlap at same z 
        r = r_in + t*(j-1); 
        S(i,2) = r_in + t*(j-1);  
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        LW = LW + pi*2*r;  
        u(i) = S(i,1); 
        v(i) = S(i,2);  
        i = i+1;  
        if size(S,1)/1000 == round(size(S,1)/1000) 
            disp(size(S,1)) 
        end  
    end 
end 
%reset index i 
i = 1; 
disp('calculating magnetic field strength...') 
for z = -L:a:2*L  
    %dummy variable strength of b at particular z 
    b = 0; 
    for j= 1:size(S,1) 
        %sum contributions to field through all coils 
        b = b + ((1.256637e-6) * I * S(j,2)^2 / (2 * (S(j,2)^2 + (z-
S(j,1))^2)^1.5)); 
    end  
    B(i) = b; 
    P(i) = z; 
    i = i+1;  
end 
%numerical differentiation of B(z), dB/dz = grad(B) 
disp('calculating dB/dz...') 
for i = 3:(size(B,2)-2) 
    gradB(i) = (-B(i+2) + 8*B(i+1) - 8*B(i-1) + B(i-2))/(12*a); 
end 
%this fills in extra values of dB/dz that were out of range with 4th order 
%differentiation.  simply reuses 3rd value for 1st and 2nd, 3rd last value 
%for 2nd last and last.  i know it's inaccurate but at a distance L from 
%solenoid the magnitude of B and slope of B are very near zero anyway 
gradB(1) = gradB(3); 
gradB(2) = gradB(3); 
gradB(size(B,2)-1) = gradB(size(B,2)-2); 
gradB(size(B,2)) = gradB(size(B,2)-2);  
%multiplication of B*gradB, assumption being that constant*B*gradB = Force 
disp('calculating force...') 
for i = 1:size(B,2) 
    F(i) = (x*V*B(i)*gradB(i))/(rho*1.256637e-6); 
    max(i) = 9.8*rho*V; 
end 
LW 
R = (1.7e-8)*LW/A 
disp('power consumption') 
disp((I^2)*R)  
%display results in plots 
subplot(2,2,1), plot(v,u,'r.') 
axis([0 L -L 2*L]) 
xlabel('Radius (meters)') 
ylabel('z (meters)')  
subplot(2,2,2), plot(B,P,'b-') 
xlabel('Field Strength (teslas)')  
subplot(2,2,3), plot(gradB,P,'g-') 
xlabel('dB/dz') 
ylabel('z(meters)')  
subplot(2,2,4), plot(F,P,'k-') 
xlabel('Force (newtons)')  
%hold on 
%plot(max,P,'y-') 
%hold off 
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Program Output 

 
Geometry of Solenoid 

 

 
Field Strength generated by solenoid 



Peter Tennessen 
LTNT, ETH Zürich 

 

33 

 
Derivative of Field Strength 

 

 
Force vs Axial Position 

Note that the weight of the sphere is ~37.4µN 
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Magnet Levitation Circuit Diagram 
 

 


